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Computer simulations of the totally asymmetric simple-exclusion process on chains with a double-chain
section in the middle are performed in the case of random-sequential update. The outer ends of the chain
segments connected to the middle double-chain section are open, so that particles are injected at the left end
with ratea and removed at the right end with rateb. At the branching point of the graph(the left end of the
middle section) the particles choose with equal probability 1/2 which branch to take and then simultaneous
motion of the particles along the two branches is simulated. With the aid of a simple theory, neglecting
correlations at the junctions of the chain segments, the possible phase structures of the model are clarified.
Density profiles and nearest-neighbor correlations in the steady states of the model at representative points of
the phase diagram are obtained and discussed. Cross correlations are found to exist between equivalent sites of
the branches of the middle section whenever they are in a coexistence phase.
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I. INTRODUCTION

The one-dimensional asymmetric simple-exclusion pro-
cess(ASEP) is one of the simplest models of self-driven
many-particle systems with particle conserving continuous-
time stochastic dynamics. The process, first introduced in
Refs. [1,2], has been extensively studied in simple chains
with periodic, closed, and open boundary conditions. In the
latter case, when particles are injected at the left end with
rate a and removed at the right end with rateb, boundary-
induced phase transitions have been predicted[3]. Exact re-
sults have been obtained for the steady-state properties under
different updating rules: random-sequential[4–6], forward-
and backward-ordered sequential[7,8], sublattice-parallel
[9,10], and fully parallel[11,12]; see also Ref.[13]. The case
of random-sequential update has been considered on a ring
with a defect(“slow” ) bond[14] and with a moving impurity
(a single “negative” particle) [15]. In both cases the particle-
density profile was found to develop a shock structure. Mul-
tispecies generalizations have been suggested, too[16,17].

One of the natural physical interpretations of the totally
asymmetric version of ASEP(TASEP) is given in terms of a
single-lane vehicular traffic, see the recent reviews[18,19].
However, the fully parallel dynamics is considered as most
appropriate for traffic modeling, and it is laid on the basis of
more sophisticated update rules[20,21]. The TASEP with
parallel update results in the Nagel-Schreckenberg model
[20] with maximum vehicle velocityvmax=1.

Recently much attention has been paid to cellular automa-
ton models of traffic on roads with localized inhomogeneities
modeling on- and off-ramps[22–24]. Such spatial inhomo-
geneities were shown to lead to different dynamical phases
of congested traffic. Microscopic models of multilane traffic
with different lane-changing rules have been suggested and
studied, too, see Ref.[25] and references therein. Two-

dimensional versions of the TASEP have been used to model
traffic in a city, see, e.g., Refs.[26–28] for the case of peri-
odic boundary conditions and Refs.[29,30] for open bound-
aries. Recently, the anisotropy effect of the probabilities of
changing the direction of motion of the cars on the dynami-
cal jamming transition under both periodic and open bound-
aries has been studied[31]. In the two-dimensional lattice
models, however, the motion of the up-directed and right-
directed cars is controlled by traffic lights. Similarly, in the
multilane traffic models some mandatory rules for lane
changes are specified. Such studies of complicated road net-
works are necessary for better understanding of real traffic.
To the best of our knowledge, the case of bifurcation or
junction of equivalent roads has not yet been considered.

In this paper we attempt to model traffic flow on a road
network consisting of a single lane with a double-chain sec-
tion in the middle. In other words, we consider a single-lane
road which bifurcates into two equivalent branches which
subsequently merge again into a single lane. Due to the net-
work complexity, we choose the simplest model of the ve-
hicular motion in terms of TASEP with random-sequential
update, since this update is the easiest for analytical treat-
ment. In particular, the exact expression for the current in-
cludes only nearest-neighbor correlations. By neglecting
these correlations at the junctions of the simple-chain seg-
ments, we introduce in our simple theory effective injection
and removal rates for each chain segment and study the pos-
sible phase structures of the whole system in terms of these
rates. Moreover, the nearest-neighbor correlations can be
readily evaluated in our computer simulations which, in turn,
allows us to distinguish between finite-size effects and cor-
relation ones. One would expect the same principal results to
hold for the other types of update, since, e.g., the phase dia-
gram of the TASEP has the same basic structure for all the
updates. The two branches of the middle section are assumed
to be equivalent simple chains consisting of a large number
of sites, and so are the simple chains connected to them, see
Fig. 1. The ends of the chain segments are open, so that*Electronic address: brankov@bas.bg
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particles are injected at the outer left end with ratea and
removed at the outer right end with rateb. At the branching
point of the graph the particles choose with equal probability
1/2 which branch of the middle double-chain section to take.
To simulate simultaneous motion of the vehicles along the
two branches, each trial to move a particle on one of them is
immediately followed by a trial to move a particle on the
other branch. If a particle occupying the last site of a branch
is chosen to move, and the site to the right, at which the
branches merge, is empty, then that particle hops to the latter
site, thus blocking(temporarily) the flow from the other
branch. One may ask the question: will the presence of an
additional lane in the middle increase the flow through the
entire network? In favor of the negative answer is the argu-
ment that the total flow is limited by the bulk capacity of
chain segments connected to the middle double-chain sec-
tion. On the other hand, the exact solution of the single-chain
problem[4,5] shows that the flow depends on the phase of
the chain under consideration which, in turn, depends on the
input and output rates at its left end and right end, respec-
tively. Here we recall that the branching and merging points
can be viewed as inhomogeneities of the entire network
which are expected to produce correlations between the oc-
cupation numbers of the nearby sites. Due to the constancy
of the current through the bonds of each chain segment, these
correlations change the density profile near the ends of the
chains. Thus, the presence of a double-chain section in be-
tween two simple chains affects the output rate of the chain
to the left and the input rate of the chain to the right. Hence,
the answer to the above question is not so obvious.

By means of computer simulations we have evaluated the
steady-state current, density profiles, nearest-neighbor corre-
lations along the simple-chain segments, as well as the cross
correlations between equally positioned sites on the two
branches of the middle section.

II. THE MODEL

In the present paper we study TASEP on a graph consist-
ing of a simple chain with a double-chain section in the
middle. A schematic representation of the system is shown in
Fig. 1. The system has four distinct parts: a head chain seg-
mentC1 of L1 sitesi =1,2, . . . ,L1, a middle section consist-
ing of upper,C2, and lower,C3, branches ofL2 sites each,

and a tail chain segmentC4 of L3 sites i =L1+L2+1,L1+L2
+2, . . . ,L1+L2+L3. To simplify notation, we denote byLtot
=L1+L2+L3 the total number of sites a particle can pass
through. Due to the hard-core exclusion each site can be
empty or occupied by at most one particle, i.e.,ti =h0,1j,
respectively, whereti is the random occupation number of
site i; the occupation numbers of the branches of the middle
section will be distinguished by the superscripts(1) and (2)
for the upperti

s1d, and lowerti
s2d branch, respectively. The

open boundary conditions are implemented by introducing
an extra “source” sitei =0 to the left of sitei =1, which plays
the role of a reservoir of particles. The time evolution of the
system obeys the random-sequential update. At each time
stept→ t+1, a pseudorandom number is drawn from the set
h0,1, . . . ,Ltotj with equal probability 1/sLtot+1d. If the inte-
ger i is in the bulk, particles jump to the neighboring right-
hand site with probabilityp=1, provided the target site is
empty:

tist + 1d = tistdti+1std,

ti+1st + 1d = ti+1std + f1 − ti+1stdgtistd. s1d

If i =0 is chosen andt1=0, then a particle is injected at site
i =1 with probabilitya, otherwise the configuration remains
unchanged. If the last sitei =Ltot of the tail chain is chosen
and if it is occupied by a particle, then that particle is re-
moved from the system with probabilityb, otherwise the
configuration remains unchanged. These boundary condi-
tions imply that the system is coupled to reservoirs of par-
ticles with constant densitiesa and 1−b, respectively.

The last sitei =L1 of the head chain is a branching point
from which the particles can take the upper or the lower
branch of the double-chain middle section with equal prob-
ability Pb=1/2. Thesimulation of simultaneous and inde-
pendent traffic of particles on the two branches is performed
in the following way. Whenever a sitei belonging to the
middle section is chosen, i.e., whenL1+1ø i øL1+L2, with
probability 1/2 that site is taken in the upper or lower branch
and the rule(1) is applied to it first. Then a second sitej ,
L1+1ø j øL1+L2, is chosen randomly from the other branch
of the middle section and the rule(1) is applied to it next.
The particles from both the upper and lower branches of the
middle section can enter the first sitei =L1+L2+1 of the tail
chain of the system whenever it is empty. In the present
study we consider only the case when all chain segments
have equal number of sites, i.e.,L1=L2=L3=L.

III. PRELIMINARY ANALYSIS

To systematically study the steady-state properties of our
network, one has to select representative values of the input
a and outputb rates. For sufficiently largeL, the natural
guidelines are given by the exact results known for the
simple chain with open boundaries in the thermodynamic
limit [5,6]. Let us recall briefly that in the bulk limit the
simple chain is in the low-density phaseL when a,b ,a
ø1/2, it is in the high density phaseH when a.b ,b
ø1/2, it is in the maximum-current phaseM when

FIG. 1. Schematic representation of the model system: one-
dimensional chain with a double-chain section in the middle. The
particles are injected at the left end with probabilitya and removed
at the right end with probabilityb. The headsC1d and tail sC4d
chain segments consist ofL1 and L3 sites, respectively, and the
chain segmentsC2,C3 of the middle section consist of equal num-
ber of sitesL2. At the bifurcation point the particles take the upper
branch with probabilitypb. In the simulations we setL1=L2=L3

=L andPb=1/2.
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a.1/2,b.1/2, and it is on the coexistence lineC between
the low-density and high-density phases whena
=b ,a,1/2. Thus, we start by assuming that each of the
different chain segmentsCi, i =1,2,3,4, of ourmodel is ex-
pected to develop steady-state properties characteristic of
one of the above simple-chain phases. It is now convenient
to denote the expected phase structure of our model by a
string of three letterssX1,X2,3,X4d, with Xi P hL ,H ,M ,Cj,
i =1, . . . ,4. HereXi stands for the phase of the chain segment
Ci, andX2=X3 due to the equivalence of the uppersC2d and
lower sC3d branches of the middle section. Of course, not all
the possible combinations are allowed to occur, e.g., due to
the fact that the current through the branches of the middle
section is half the one through the head and tail chains, for
macroscopic chains these branches may never be found in
the maximum-current phase. We shall refine the possible
phase structure of our model at two successive levels A and
B.

A. First-level analysis

At the first level A we take into account only the exact
results for a simple chain with open boundaries in the ther-
modynamic limit. In this case, the pair correlations between
nearest-neighbor sites vanish in the bulk and the currentJsrd
through a chain with bulk particle densityr is given by
Jsrd=rs1−rd. Denote byri the bulk density in the chain
segmentCi, and by ktil the steady-state particle density at
site i. Then, taking into account the inflowJin=as1−kt1ld
and outflowJout=bktLtot

l of the system, the current conser-
vation in our model implies the chain of equalities:

J = as1 − kt1ld = r1s1 − r1d = 2r2,3s1 − r2,3d = r4s1 − r4d

= bktLtot
l. s2d

Here we have taken into account that each of the middle-
section branches is chosen with probabilityPb=1/2 which,
together withL2=L3, leads to their equivalence, hencer2
=r3. Thus, we obtain that the bulk densities must obey the
relations

r1 = H r4,

1 − r4,
r2 = r3 =

1

2
h1 ± f1 − 2r1s1 − r1dg1/2j. s3d

Let us confine our consideration now to the determination of
the allowed phase structures consisting of the pure phasesL,
H, andM only. At that we shall keep in mind that when,
under given values of the ratesa and b, a chain segment
may be in both a low- and high-density phase, it may occur
as well on the coexistence lineC between these two phases.
Consider now all the pure phases of the head chainC1.

A1. Let the head chainC1 be in the low-density phase
sX1=Ld with bulk densityr1,1/2. Then, from the exact
solution for a single chain we have

J = as1 − ad, kt1l = a, r1 = a , 1/2. s4d

Note that Eq.(3) allows the tail chainC4 to be either inL
with r4=a, or in H with r4=1−a. The latter case,X4=H,
implies b,1/2 andJ=bs1−bd, which is possible only if

a=b. Since the current through each of the branches of the
middle section equals half the total one,r2,3s1−r2,3d=as1
−ad /2, C2 andC3 may be found either inL with r2,3

− sad,a
or in H with r2,3

+ sad.1−a, where

r2,3
± sad = 1

2h1 ± f1 − 2as1 − adg1/2j. s5d

Thus, the possible pure-phase structures withH1=L are

sL,L,Ld, sL,H,Ld if a , 1/2,a Þ b s6d

and

sL,L,Hd, sL,H,Hd if a = b , 1/2. s7d

A2. Let the head chainC1 be in the high-density phase
sX1=Hd with bulk densityr1.1/2. Then, from Eq.(3) we
obtain that the tail chainC4 can be either inL with r4=1
−r1 or in H with r4=r1. In the former case the phase struc-
ture is

sH,L,Ld, sH,H,Ld, s8d

and no further conclusions can be drawn.
In the latter case,X4=H implies

b , 1/2, J = bs1 − bd, r1 = r4 = ktLtot
l = 1 −b . 1/2.

s9d

Since the current through each of the branches of the middle
section equals half the total one,r2,3s1−r2,3d=bs1−bd /2, C2

andC3 can be found inL with r2,3
− sbd,1−r1, or in H with

r2,3
+ sbd.r1, where r2,3

± sbd is given by Eq.(5). Thus, the
other two possible pure-phase structures withX1=H are

sH,L,Hd, sH,H,Hd if b , 1/2. s10d

A3. Let the head chainC1 be in the maximum-current
phase sX1=Md, which may happen ifa.1/2. Then J
=1/4 and Eq.(3) implies thatr1=r4=1/2, hence the tail
chain C4 must also be in the maximum-current phase,X4
=M, which may happen ifb.1/2. Since the current
through each of the branches of the middle section equals
1/8, C2 andC3 can be found either inL with r2,3

− ,1/2, or
in H with r2,3

+ .1/2, where

r2,3
± = s1 ± 1/Î2d/2. s11d

Thus, the possible pure-phase structures withX1=M are

sM,L,Md, sM,H,Md if a . 1/2 andb . 1/2.

s12d

From the above analysis it is evident that a little informa-
tion can be inferred about the phase structure of our model
from the current conservation condition(2). That is why, at
the next level approximation B we shall ignore the correla-
tions between the chain segments, which will make possible
the definition of effective injection and/or removal rates at
the junctions of the simple chains. On the one hand, this is an
approximation, since the inhomogeneities introduced by the
branching and merging nodes are expected to induce corre-
lations, as is the case of a simple chain, or a ring, with a
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defect bond, or a single-impurity particle, respectively. On
the other hand, the comparison of the so obtained predictions
with the results of computer simulations will reveal in which
cases the correlations between the chain segments are essen-
tial for the phase structure of our network.

B. Second-level analysis

Passing to the second level B, we assume the following
pairs of random variables to be independent:tL1

andtL1+1
s1,2d , as

well astL1+L2

s1,2d andtL1+L2+1. The neglect of the corresponding
pair correlations leads to the approximate expressions for the
total current:

J . 1
2ktL1

ls1 − ktL1+1
s1d ld + 1

2ktL1
ls1 − ktL1+1

s2d ld

. sktL1+L2

s1d l + ktL1+L2

s2d lds1 − ktL1+L2+1ld. s13d

Hence, by comparing with the case of a simple chain with
open boundaries, and taking into account the equivalence of
the two branches of the middle section, we obtain estimates
for the removal rateb1 of the head chainC1, the injection
a2,3, and removalb2,3 rates of the chain segmentsC2,3, and
the injection ratea4 of the tail chainC4:

b1 = 1 − ktL1+1
s1,2d l, a2,3= 1

2ktL1
l, b2,3= 1 − ktL1+L2+1l,

a4 = 2ktL1+L2

s1,2d l. s14d

On the grounds of the above assumptions, we are in the
position to reconsider in more detail the theoretical expecta-
tions about the phase structure of our model.

B1. Consider first the phase structures given in Eq.(6),
where X1=L implies a,1/2 and a,b1, X4=L implies
a4,1/2 anda4,b. Then, from Eqs.(2) and(14) it follows
that

a4 = a , 1/2, J = as1 − ad,

r1 = r4 = ktL1+L2+1l = a, b2,3= 1 −a. s15d

The above relations are compatible only withX2,3=L when
the simple-chain solution yields

ktL1+1
s1,2d l = r2,3= a2,3, b1 = 1 − ktL1+1

s1,2d l = 1 −a2,3. s16d

Hence, taking into account Eq.(3) with r1=a, and keeping
in mind that in the low-density phaser2,3,1/2, we obtain

a2,3= r2,3
− sad , b2,3= 1 −a,

b1 = 1 −r2,3
− sad = r2,3

+ sad . a. s17d

The above equations prove that the phase structuresL ,L ,Ld
is compatible with the conditions on the external rates
a,1/2 anda,b, under which a single chain is in the low-
density phase.

The alternativeX2,3=H is excluded, since then one would
have r2,3=1−b2,3=a, hence,b2,3=1−a.1/2 violates the
condition for a high-density phase ofC2,3.

Consider now the pure-phase structures given in Eq.(7),
which are allowed under the conditiona=b,1/2. Recall
that a single chain with such injection and removal rates

would be on the coexistence line between low- and high-
density phases. FromX1=L andX4=H, taking into account
Eq. (14), we infer

kt1l = r1 = a, ktL1
l = as1 − ad/b1, a2,3= as1 − ad/s2b1d

s18d

and

ktL1+L2+1l = 1 −as1 − ad/a4, ktLtot
l = r4 = 1 −a,

b2,3= as1 − ad/a4. s19d

When X2,3=L we obtain from Eq.(3) that r2,3=r2,3
− sad,

and from the simple-chain solution it follows that

ktL1+1
s1,2d l = r2,3

− sad = a2,3= ktL1
l/2,

ktL1+L2

s1,2d l = a2,3s1 − a2,3d/b2,3= a4/2. s20d

The above equalities determinea2,3=r2,3
− sad,1/2 and from

Eq. (14) we find alsob1=1−a2,3=r2,3
+ sad.a. The latter in-

equality, together witha,1/2, ensures thatX1=L. How-
ever, the values ofb2,3 and a4 remain undefined, only a
relation between them exists according to the last equality in
Eq. (19). The conditionsb2,3.a2,3 for X2,3=L and a4.b
=a for X4=H can be rewritten in terms of the local density
ktL1+L2

s1,2d l as

a/2 , ktL1+L2

s1,2d l , r2,3
+ sad = 1 − ktL1+1

s1,2d l. s21d

WhenX2,3=H we obtain from Eq.(3) that r2,3=r2,3
+ sad,

and from the simple-chain solution it follows that

ktL1+L2

s1,2d l = r2,3
+ sad = 1 −b2,3= ktL1+L2+1l,

ktL1+1
s1,2d l = 1 −b2,3s1 − b2,3d/a2,3= 1 −b1.

s22d

The above equalities determineb2,3=r2,3
− sad,1/2 and from

Eq. (14) we find alsoa4=2r2,3
+ sad.2a. The latter inequal-

ity, together withb=a,1/2, ensures thatX4=H. However,
the values ofb1 and a2,3 remain undefined, only a relation
between them, namely,a2,3=as1−ad / s2b1d follows from
the second equalities in Eqs.(14) and (18). The conditions
a,b1 for X1=L andb2,3,a2,3 for X2,3=H can be rewritten
in terms of the local densityktL1+1

s1,2d l as

r2,3
− sad , ktL1+1

s1,2d l , 1 − a. s23d

Here we have taken into account that, due to Eqs.(18) and
(19), b2,3,a2,3 is equivalent toa4.b1/2.

Next, from Eqs.(18) and (19) it follows that if b1=a4,
then a2,3=b2,3=r2,3

− sad,1/2, which implies that the chain
segments of the middle section are on the coexistence lineC
between the phases with bulk densitiesr2,3

− sad and r2,3
+ sad.

From the simple-chain solution we know that the local den-
sity profile is then linear, with

ktL1+1
s1,2d l = r2,3

− sad, ktL1+L2

s1,2d l = r2,3
+ sad. s24d
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Summarizing the above results, we obtain the following
possibilities:

sL,L,Ld if a , 1/2 anda , b, s25d

sL,L,Hd if a = b , 1/2 anda/2 , ktL1+L2

s1,2d l , r2,3
+ sad,

s26d

sL,H,Hd if a = b , 1/2 andr2,3
− sad , ktL1+1

s1,2d l , 1 − a,

s27d

sL,C,Hd if a = b , 1/2 andktL1+1
s1,2d l = r2,3

− sad = 1 − ktL1+L2

s1,2d l.

s28d

B2. Consider next the phase structures given in Eq.(8).
Due to the simple-chain solution,X1=H implies

b1 , 1/2, a . b1, r1 = 1 −b1 . 1/2, J = b1s1 − b1d,

ktL1
l = 1 −b1, s29d

andX4=L implies

a4 , 1/2, a4 , b, r4 = a4, J = a4s1 − a4d, ktL1+L2+1l = a4.

s30d

Hence, taking into account Eq.(2), we obtain

a4 = b1, r2,3= r2,3
− sb1d , 1/2, r4 = 1 −r1 = b1 , 1/2.

s31d

In addition, from Eq.(14) we obtain

ktL1+1
s1,2d l = 1 −b1 = ktL1

l = 2a2,3 . 1/2,

ktL1+L2

s1,2d l = a4/2 = b1/2 , 1/4. s32d

One can readily see that the above relations are incompatible
with both possibilitiesX2,3=L and X2,3=H. Indeed, in the
former case the simple-chain solution yields

ktL1+1
s1,2d l = r2,3

− sb1d = a2,3 , 1/2, s33d

which contradicts the first chain of equalities in Eq.(32),
since 1−b1Þ2r2,3

− sb1d for all b1Þ1. In the latter case,
X2,3=H, the simple-chain solution yields

ktL1+L2

s1,2d l = r2,3
+ sb1d . 1/2, s34d

which contradicts the second chain of equalities in Eq.(32),
since 2r2,3

+ sb1dÞb1 for all b1. Therefore, phase structures of
the typesH ,X ,Ld are excluded by our analysis.

Consider now the pure-phase structures given in Eq.(10).
From Eqs.(9) and (29), which hold true in this case, it fol-
lows thatb=b1,1/2 andktL1

l=1−b.1/2. The possibility
X2,3=L is excluded, since then the single-chain solution
would give

ktL1+1
s1,2d l = r2,3

− sbd = a2,3, s35d

which (for bÞ1) contradicts the result that follows from Eq.
(14) and the last equality in Eq.(29):

a2,3= ktL1
l/2 = s1 − bd/2. s36d

It remains to consider the other possibilityX2,3=H when the
simple-chain solution gives

ktL1+L2

s1,2d l = r2,3
+ sbd = 1 −b2,3, s37d

henceb2,3=r2,3
− sbd. From Eq.(14) it follows that

a4 = 2ktL1+L2

s1,2d l = 2s1 − b2,3d = 2r2,3
+ sbd . 1, s38d

which, together withb,1/2, ensures the conditiona4.b
for X2,3=H. From Eqs.(29) and (37) it follows that for all
bÞ1,

a2,3= ktL1
l/2 = s1 − bd/2 . b2,3= r2,3

− sbd and

b2,3= r2,3
− sbd , 1/2. s39d

The above inequalities are the necessary and sufficient con-
ditions for the chain segmentsC2,3 of the middle section to
be in the high-density phase. Thus, we have ended up with
the phase structure

sH,H,Hd if a . b andb , 1/2. s40d

B3. Finally, consider the phase structures given in Eq.
(12). From the simple-chain solutions forX1=M (when
a.1/2 and b1.1/2d and X4=M (when a4.1/2 and
b.1/2d we have

kt1l = 1 − s4ad−1 . 1/2, ktL1
l = s4b1d−1 , 1/2,

ktL1+L2+1l = 1 − s4a4d−1 . 1/2, ktLtot
l = s4bd−1 , 1/2.

s41d

Hence, taking into account Eq.(14), we obtain a2,3
=1/s8b1d,1/4 andb2,3=1/s4a4d,1/2.

If X2,3=L, then r2,3=r2,3
− and the simple-chain solution

yields

ktL1+1
s1,2d l = a2,3= r2,3

− , 1/4,

ktL1+L2

s1,2d l = a2,3s1 − a2,3d/b2,3= a4/2. s42d

With the aid of Eq.(14) we determineb1=r2,3
+ .1/2, while

b2,3 and a4 remain unknown. The remaining condition
b2,3.a2,3 for X2,3=L yieldsa4,2r2,3

+ . The latter inequality
and the conditiona4.1/2 for X4=M lead to

1/4, ktL1+L2

s1,2d l , r2,3
+ . s43d

If the other possibilityX2,3=H takes place, thenr2,3
=r2,3

+ and the simple-chain solution yields

ktL1+L2

s1,2d l = r2,3
+ = 1 −b2,3= 1 − s4a4d−1,

ktL1+1
s1,2d l = b2,3s1 − b2,3d/a2,3= 1 −b1. s44d

Hence, we obtain the resultsb2,3=r2,3
− ,1/2 and a4
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=2r2,3
+ .1, which are in agreement with the assumed phases

of C2,3 and C4. The remaining conditionsa2,3.b2,3 for
X2,3=H and b1.1/2 for X1=M lead to the inequalities
1/2,b1,r2,3

+ , or, equivalently,

r2,3
− , ktL1+1

s1,2d l , 1/2. s45d

Since the chain segmentsC2,3 can be both in low-density
and high-density pure phases, they may be found on the co-
existence line, too. In this case the simple-chain solution
yields a linear density profile with

ktL1+1
s1,2d l = r2,3

− ,ktL1+L2

s1,2d l = r2,3
+ . s46d

Hence we obtainb1=r2,3
+ .1/2, a4=2r2,3

+ .1, and a2,3
=b2,3=r2,3

− ,1/4, in full agreement with the assumed phases
of all the chain segments.

Summarizing the above results, we obtain the following
possibilities:

sM,L,Md if a . 1/2,b . 1/2 and 1/4, ktL1+L2

s1,2d l , r2,3
+ ,

s47d

sM,H,Md if a . 1/2,b . 1/2 andr2,3
− , ktL1+1

s1,2d l , 1/2,

s48d

sM,C,Md if a . 1/2,b . 1/2 and

ktL1+1
s1,2d l = r2,3

− = 1 − ktL1+L2

s1,2d l. s49d

Thus, the refined analysis of the allowed phase structures,
based on the neglect of the pair correlations between the
nearest-neighbor occupation numbers belonging to different
chain segments, yields the eight possibilities given by Eqs.
(25)–(28), (40), and(47)–(49). However, our computer simu-
lations, presented in the following section, show that when-
ever the chain segmentsC2,3 of the middle section may exist
in either the low- or high-density phases, they are always
found on the coexistence line. The numerical results for each
of the remaining four phase structures will be compared with
the predictions of our simple theory in the following section.

IV. SIMULATION RESULTS

The main results of our computer simulations are obtained
for chain segments of equal number of sitesL=100 or L
=200. Time is measured in units ofs3L+1d local trials,
which we call steps per site(SPS). Our estimates of the
relaxation timeNt for reaching the steady state from the
empty initial configuration show that it may strongly depend
on the phase structure of the system, as well as on the quan-
tity under consideration: as a rule, the shortest relaxation
times are found for the evolution the total density per site of
a chain segment, and the longest for the local cross correla-
tions between equivalent sites belonging to the two branches
of the middle section. Below, we present the results for the
different phase structures observed, along with a comparison
with the theoretical predictions obtained in the preceding
section.

1. Casea,1/2 anda,b

This case was studied for the particular values ofa
=0.25 andb=0.5. The estimated relaxation time for the bulk
density is Nt.400 SPS. The steady-state quantities were
evaluated on the basis of a twofold averaging over 300 inde-
pendent runs of length 104 SPS each(after the omission of
the first 53103 SPS). The so obtained local density profile is
shown in Fig. 2 as a function of the normalized coordinate
x= i /L. As expected from our preliminary analysis, see Eq.
(25), the phase structuresL ,L ,Ld is realized. The compari-
son of the theoretical predictions(with the superscript th)
and the simulation results(with the superscript sim) for the
current and the bulk densities in the simple-chain segments
shows that they agree fairly well, within expected finite-size
and finite-sample corrections:

Jth = 0.1875,r1
th = 0.25, r2,3

th = 0.1047 . . . ,r4
th = 0.25,

Jsim = 0.1874s1d, r1
sim = 0.2501s4d, r2,3

sim = 0.104s1d,

r4
sim = 0.2513s6d. s50d

Even details of the shape of the density profiles are well
explained. The density profile of the head chain segmentC1
is typical for a simple chain in the subregiona,1/2,b of
the low-density phase, wherea,1/2 and 1−b1,a,b1.
Indeed, the above conditions are fulfilled, since from Eq.
(17) we haveb1.a and 1−b1=r2,3

− s0.25d=0.1047. . .,a.
Thus, the density profile is flat from the first sitei =1 till
close to the end sitei =L1, where it bends downward to reach
the theoretical value given by Eqs.(14) and (17):

FIG. 2. The simulation results for the local density profilektl in
the system as function of the scaled distancex= i /L, i
=1,2, . . . ,3L, in the low-density phasesL ,L ,Ld for the specific
choicea=0.25,b=0.5.
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ktL1
lth = 2a2,3= 2r2,3

− s0.25d = 0.2094 . . . . s51d

The latter value is slightly higher than the simulation esti-
matektL1

lsim<0.2008.
The local density profile of the chain segmentsC2,3 of the

middle section closely resembles the one of a simple chain in
the subregiona,b,1/2 of the low-density phase, where
a2,3,1/2 and a2,3,b2,3,1−a2,3. The above conditions
hold, since from Eq.(17) we havea2,3,b2,3 and a2,3,1
−b2,3=a. As is seen from Fig. 2, the density profile is almost
flat from the first site, wherektL1+1lsim<0.1023 is just
slightly less than the bulk valuer2,3

th =0.1047. . ., till close to
the end, where it bends upward to the valuektL1+L2

s1,2d lsim

<0.1536. However, the latter value is noticeably higher than
the theoretical prediction following from Eqs.(14) and(15):

ktL1+L2

s1,2d lth = a4/2 = a/2 = 0.125. s52d

The observed discrepancies are obviously due to the short-
range nearest-neighbor anticorrelations and correlations
which appear near the inhomogeneities introduced by the
bifurcation and merging points, see Fig. 3.

The local density profile of the tail chain segmentC4 has
a slight bending upward close to the left end, where
ktL1+L2+1lsim<0.273 is somewhat higher than the bulk den-
sity. This effect is apparently caused by the above mentioned
correlations. Apart from it, the profile fits well to the one of
a simple chain in the subregiona,b,1/2 of the low-
density phase, wherea4,1/2 and a4,b,1−a4. The
above conditions hold, since from Eq.(15) we havea4=a
=0.25 and, in the case under considerationb=0.5. As is seen
from Fig. 2, the density profile is flat in the bulk and has a
well pronounced bending upward close to the last sitei

=Ltot, wherektLtot
lsim<0.3752. The latter value is in remark-

able agreement with the exact simple-chain solution in the
thermodynamic limit:

ktLtot
lth = a4s1 − a4d/b = 0.375. s53d

The observed discrepancies are obviously due to the short-
range nearest-neighbor correlations which appear near the
inhomogeneities introduced by the bifurcation and merging
points, see Fig. 3.

2. Casea=b<1/2

Most surprising are the results of our computer simula-
tions in this case. For chain segments of lengthL=200 sites
and the particular valuesa=b=0.25 the estimated relaxation
time isNt<63105. The results reported here were obtained
after averaging over 200 runs of length 23106 SPS each.
Since we have no control over the local densitiesktL1+1

s1,2d l and

ktL1+L2

s1,2d l, we cannot force the system in the phase structures
given by Eqs.(26) and(27). Therefore, we expect to find the
chain segments of the middle section on the coexistence line,
see Eq.(28), between the low-density phase with bulk den-
sity r2,3

− s0.25d<0.1047 and the high-density phase with bulk
density r2,3

+ s0.25d<0.8953. However, the simulations
yielded values of the local density at the ends of these seg-
ments,

ktL1+1
s1,2d lsim = 0.2395s1d,ktL1+L2

s1,2d lsim = 0.7503s1d, s54d

which are very different from the theoretical expectations,
see Eq.(24).

Another unusual feature is the nonvanishing slope in the
density profiles of the head and tail chain segments, see Fig.
4, which are expected to be in the low- and high-density
phase, respectively. In excellent agreement with our simple
theory are only the local densities at the first and the last sites
of the system:

kt1lsim < 0.2508,ktLtot
lsim < 0.7493. s55d

According to Eqs.(18) and (19), the above values are to be
compared tokt1lth=0.25 andktLtot

lth=0.75, respectively.
An inspection of the nearest-neighbor correlations shown

in Fig. 5 reveals two important features. First, strong corre-
lations with parabolic spatial dependence in the chain seg-
ments of the middle section, which is indicative of phase
coexistence with completely delocalized domain wall be-
tween the low- and high-density phases. Second, rather
strong correlations developing in the head and tail chain seg-
ments away from the open boundaries. The spatial depen-
dence of these correlations resembles the wings of a parabola
with missing central part. In an attempt to explain these fea-
tures, we elaborate the model of completely delocalized do-
main wall by taking into account the inhomogeneous block
structure of our system.

Let the position of the domain wally be a continuous
random variable taking values in the intervals0,3Ld. Sup-
pose that it is distributed with uniform density over each of
the chain segments. Take into account that the domain wall
in C1 and C4 is different from that in the branches of the

FIG. 3. The simulation results for the nearest-neighbor correla-
tion functionFcor in the low-density phasesL ,L ,Ld for the specific
choicea=0.25,b=0.5.
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middle sectionC2,3. Indeed, the current through bothC1 and
C4 is equal toJ=as1−ad, hence the domain wall in each of
these segments is between a low-density phase with bulk
densityr1=a,1/2 and a high-density phase with bulk den-
sity r4=1−a.1/2. On the other hand, the current through
each of the chain segmentsC2 andC3 of the middle section
is equal toJ/2=as1−ad /2, and the domain wall in each of
these segments is between a low-density phase with bulk
density r2,3

− sad and a high-density phase with bulk density
r2,3

+ sad. Therefore, these domain walls are expected to travel
with different velocities, due to which the probabilityp1 of
finding the domain wall in the head or tail chains may differ
from the probabilityp2 of finding it in the middle section.
Let us denote byPs·d the probability of the event in the
brackets and pass to spatial coordinates normalized byL,

namely,x= i /L andj=y/L. Then we can write the probabil-
ity distribution function of the domain wall in the form

Psj , xd = 5p1x if 0 , x , 1

p1 + p2sx − 1d if 1 , x , 2

p1 + p2 + p1sx − 2d if 2 , x , 3,

s56d

where 2p1+p2=1, sincePsj,3d=1. Since the density pro-
file is given by the general expression

ktsxdl = 5s1 − adPsj , xd + aPsj . xd if 0 , x , 1

r2,3
+ sadPsj , xd + r2,3

− sadPsj . xd if 1 , x , 2

s1 − adPsj , xd + aPsj . xd if 2 , x , 3

s57d

by taking into account thatp2=1−2p1, we obtain explicitly

ktsxdl = 5a + s1 − 2adp1x if 0 , x , 1

r2,3
− sad + fr2,3

+ sad − r2,3
− sadgfp1 + s1 − 2p1dsx − 1dg if 1 , x , 2

s1 − ads1 − p1d + ap1 + s1 − 2adp1sx − 2d if 2 , x , 3.

s58d

The following important consequences from the above
theoretical model agree quantitatively with the simulation
results. First, the density profiles of all the chain segments
are linear, but have different slopes:s1−2adp1 for C1 andC4,
and f1−2as1−adg1/2s1−2p1d for C2,3. In our case ofa
=0.25, the evaluation ofp1 from the linear approximation to

the density profiles ofC1 andC4 yields p1<0.197. This, in
turn, gives us the estimate 0.479 for the slope of the density
profiles of the segmentsC2,3 of the middle section, which
agrees well enough with the simulation result shown in Fig.
4. Second, the evaluation of the local densities at the internal
ends of the chain segments, based on Eq.(58), yields

FIG. 4. (Color online) The simulation results for the averaged
density profilektl in the system as function of the scaled distance
x= i /L, i =1,2, . . . ,3L, at the phase pointa=0.25,b=0.25 (solid
squares) and the analytic results given by Eq.(58) (dashed lines).

FIG. 5. (Color online) The simulation results for the nearest-
neighbor correlation functionFcor at the phase pointa=0.25,b
=0.25 (solid squares—solid line), and the analytic results given by
Eq. (61) (dashed lines).
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ktL1
lth < 0.348, ktL1+1

s1,2d lth < 0.260,

ktL1+L2

s1,2d lth < 0.7395,ktL1+L2+1lth < 0.6515.

s59d

In spite of the improved agreement with the simulation re-
sults in some cases, the discrepancies remain rather large. An

explanation of this fact can be looked for in the correlations
that develop at the junctions of the head and tail chains with
the double-chain middle section.

The third important consequence of our simple domain-
wall model is that it describes very well the gross features of
the nearest-neighbor correlationsFcorsid=ktiti+1l−ktilkti+1l,
evident from Fig. 5. Indeed, ignoring the 1/L corrections, we
have

Fcorsid = Hs1 − 2ad2fPsj , xd − P2sj , xdg if 0 , x , 1 or 2, x , 3

f1 − 2as1 − adgfPsj , xd − P2sj , xdg if 1 , x , 2,
s60d

wherex= i /L. Thus, by using Eq.(56) we obtain the explicit expressions for the nearest-neighbor correlation function:

Fcorsid = 5s1 − 2ad2sp1x − p1
2x2d if 0 , x , 1

f1 − 2as1 − adgf− 2 + 9p1s1 − p1d + s1 − 2p1d2s3x − x2dg if 1 , x , 2

s1 − 2ad2fp1s3 − xd − p1
2s3 − xd2g if 2 , x , 3.

s61d

The above expressions describe very well the simulation re-
sults, both qualitatively and quantitatively. It can be readily
checked that the maximum of the central parabola is reached
at x=3/2 andequalsf1−2as1−adg /4<0.156, while the left
and right parabolic wings start from zero at the outer ends
x=0 and x=3, respectively, and grow inward up tos1
−2ad2p1s1−p1d<0.040 at the pointsx=1 andx=2, respec-
tively.

Another interesting finding is the existence of strong cross
correlations between sites of the two branches,Fcrosssid
=kti

s1dti
s2dl−kti

s1dlkti
s2dl, which are almost constant and of the

order 0.1 along the whole length of the middle section.

3. Casea,b and b,0.5

In this case the phase structuresH ,H ,Hd, given by Eq.
(40), was simulated witha=0.5 andb=0.25 for chain seg-
ments of lengthL=100. The relaxation time for the bulk
density was found to beNt.43103 SPS, and the steady-
state quantities were evaluated after averaging over 300 runs
of length 104 SPS each. The local density profile shown in
Fig. 6 displays for each chain segment the features typical
for a simple chain in a high-density phase. The comparison
of the theoretical predictions and the simulation results for
the current and the bulk densities in the simple-chain seg-
ments shows a fairly good agreement:

Jth = 0.1875,r1
th = 0.75,r2,3

th = 0.89528 . . . ,r4
th = 0.75,

Jsim = 0.1870s5d, r1
sim = 0.749s1d. r2,3

sim = 0.896s1d,

r4
sim = 0.7504s5d. s62d

The details of the density profiles are also well explained.
The density profile of the head chain segment is typical for a
simple chain in the subregionb,a,1/2 of the high-
density phase, whereb1,1/2 and b1,a,1−b1. These

conditions hold, since in the case under consideration we
have b1=b=0.25. From the simple-chain solution in the
thermodynamic limit it follows that the density profile ofC1
is bent downward near the first site, where it starts from the
value

kt1lth = 1 −bs1 − bd/a = 0.625. s63d

This value is in excellent agreement with the simulation re-
sult kt1lsim=0.625s1d.

FIG. 6. Computer simulation results for the local density profile
ktl in the system as function of the scaled distancex= i /L, i
=1,2, . . . ,3L, in the high-density phasesH ,H ,Hd for the specific
choicea=0.5,b=0.25.
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For the chain segmentsC2,3 of the middle section we have
from Eq. (39) b2,3,1/2, a2,3.b2,3 and 1−b2,3
=r2,3

+ sbd.a2,3. Thus, C2,3 are also in the subregion
b,a,1/2 of the high-density phase and their density pro-
file is expected to start from the value

ktL1+1
s1,2d lth = 1 −b2,3s1 − b2,3d/a2,3= 0.6666 . . . . s64d

This prediction of our simple theory is significantly lower
than the simulation estimatektL1+1

s1,2d lsim<0.737. The observed
discrepancy can be attributed to the rather strong nearest-
neighbor correlations that develop at the junction of the head
chain with the double-chain middle section, see Fig. 7.

The local density profile of the tail chain segmentC4 is
typical for a simple chain in the subregiona.1/2,b,1/2
of the high-density phase, defined by the inequalities
b,1/2, 1−a4,b,a4. This is the case indeed, since Eq.
(38) yields a4.1. The theoretical prediction for the local
density at the first site ofC4 is

ktL1+L2+1lth = 1 −bs1 − bd/a4 = 0.895 28 . . . , s65d

which is slightly lower than the simulation result
ktL1+L2+1lsim<0.898. This discrepancy may be due to the
nearest-neighbor anticorrelations that develop at the junction
of the double-chain middle section with the tail chain, see
Fig. 7.

4. Casea.1/2 andb.1/2

In this case it is the phase structuresM ,C ,Md that is
realized in our computer simulations out of the three possi-
bilities given by Eqs.(47)–(49). Here we present the results
for a=b=0.75 and chain segments of lengthL=200. The
estimated relaxation time for the bulk density in this case is
Nt.1.753106 SPS, and the steady-state quantities of inter-

est were evaluated by averaging over 100 runs of length
5.53106 each. Having in mind the eventual finite-size ef-
fects, the estimated currentJsim<0.2518 agrees well enough
with the theoretical valueJth=0.25. The local density profile
is shown in Fig. 8. The head and tail chain segments display
density profiles that are typical for a simple chain in the
maximum-current phase. This is confirmed by the fairly
good agreement of the theoretical predictions and the simu-
lation results for the local densities at the end points of these
chain segments:

kt1lth = 0.666 66 . . . ,ktL1
lth = 0.292 89 . . . ,

ktL1+L2+1lth = 0.853 55 . . . ,ktLtot
lth = 0.333 33 . . . ,

kt1lsim < 0.6643,ktL1
lsim < 0.2842,

ktL1+L2+1lsim < 0.8481,ktLtot
lsim < 0.3357.

s66d

Somewhat problematic seems the interpretation of the
density profile in the chain segments of the middle section.
Instead of being a straight line interpolating between the den-
sities r2,3

− and r2,3
+ of the low- and high-density phases, it

shows pronounced curvatures near both ends. The compari-
son of our theoretical predictions and the simulation results
for the local densities at the ends of the chain segmentsC2,3,

ktL1+1
s1,2d lth = 0.146 44 . . . ,ktL1+L2

s1,2d lth = 0.853 55 . . . ,

ktL1+1
s1,2d lsim < 0.1548,ktL1+L2

s1,2d lsim < 0.8345 s67d

shows deviations larger than the estimated statistical accu-
racy. A detailed analysis shows that these deviations are due
to the nearest-neighbor correlations, which are not negligible

FIG. 7. The simulation results for the nearest-neighbor correla-
tion functionFcor in the high density phasesH ,H ,Hd for the spe-
cific choicea=0.5,b=0.25.

FIG. 8. The simulation results for the averaged density profile
ktl in the system as function of the scaled distancex= i /L, i
=1,2, . . . ,3L, at the phase pointa=0.75,b=0.75.
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in the maximum-current phase. Indeed, from the exact ex-
pressions for the current along the two equivalent bonds after
the bifurcation point,

J = s1/2dktL1
s1 − tL1+1

s1d dl + s1/2dktL1
s1 − tL1+1

s2d dl, s68d

and before the merging point,

J = ktL1+L2
s1 − tL1+L2+1

s1d dl + ktL1+L2
s1 − tL1+L2+1

s2d dl, s69d

we obtain the following exact relationships:

ktL1+1
s1,2d l = 1 − fJ + FcorsL1dg/ktL1

l,

ktL1+L2

s1,2d l = fJ/2 + FcorsL1 + L2dg/f1 − ktL1+L2+1lg. s70d

By inserting here the simulation estimates for the nearest-
neighbor correlations FcorsL1d<−0.0116 and FcorsL1d
<0.000 654, and the values of the corresponding average
occupation numbers given in the second line of Eq.(66), we
obtain the resultsktL1+1

s1,2d l=0.154 77 andktL1+L2

s1,2d l=0.8329,
which coincide with the estimates from our computer simu-
lations within the numerical precision. The same argument
holds for the last site of the head chain and the first site of the
tail chain, see Eq.(66), leading to the correct valuesktL1

l
=0.2842 andktL1+L2+1l=0.8483.

The nearest-neighbor correlations are shown in Fig. 9.
Their parabolic dependence on the distance from the ends of
the chain segmentsC2,3 is indicative of coexistence with
completely delocalized domain wall between the low- and

high-density phases. In such a case, the theory predicts that
the nearest-neighbor correlations attain the maximum value
of sr2,3

+ −r2,3
− d2/4=0.125 at the middle of the chain. An in-

spection of Fig. 9 shows that the above value is very close to
the simulation result.

Similar to the casea=b=0.25, we find rather strong cross
correlations between sites with the same labeli belonging to
the two branches of the middle section, which is quite inter-
esting and unexpected result of our simulations. The spatial
dependence of the cross correlations is shown in Fig. 10.

V. DISCUSSION

We have studied the TASEP on a directed graph with
nontrivial topology and open boundaries. The local density
profiles, nearest-neighbor correlations along the chain seg-
ments, and cross correlations between equivalent sites be-
longing to the two branches of the middle section were simu-
lated for values of the parametersa andb which correspond
to all the phases of a simple chain. The presence of a double-
chain middle section leads in some of the cases to expected
steady-state phase structures, such assL ,L ,Ld and
sH ,H ,Hd, whereL andH stand for low- and high-density
phases, respectively, which are characterized by short-range
correlations appearing in the neighborhood of the bifurcation
and merging sites of the network. Otherwise, the properties
of the simple-chain segments are close to those expected on
the grounds of the approximation which ignores the above
mentioned correlations. For example, the reduction of the
current by factor of 1/2 in the equivalent branches of the
middle section leads to a radical decrease, or increase, of the
bulk density in thesL ,L ,Ld and sH ,H ,Hd cases, respec-
tively.

Rather unexpected are the observedsM ,C ,Md and what
we would call mixedsL ,C ,Hd andsC ,C ,Cd phase structures.

FIG. 9. The simulation results for the nearest-neighbor correla-
tion functionFcor at the phase pointa=0.75,b=0.75.

FIG. 10. The simulation results for the cross-correlation func-
tion Fcross=kti

s1dti
s2dl−kti

s1dlkti
s2dl between sitesi belonging to the

different branches of the loop at the phase pointa=0.75,b=0.75.
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In the former case, which takes place whena.1/2 and
b.1/2, the bending in opposite directions of the local den-
sity profile of the head and tail chains in the maximum-
current phase leads to a coexistence of low- and high-density
phases in the chain segments of the middle section. The latter
case occurs ata=b,1/2 when a simple chain is on the
coexistence line. For our chain with a double-chain middle
section we have found clear evidence of a delocalized do-
main wall which has different probabilities of being found in
the head/tail chains and in the branches of the middle sec-
tion. No theoretical explanation has been found yet for the
significant cross correlations between the random occupation
numbers of equivalent sites belonging to the two branches of
the middle section whenever these branches are in a coexist-
ence phase.

In all the cases studied, the current through the chain with
a double-chain middle section was found to be the same
(within statistical error) as the one through a simple chain
under the same injection and removal rates.

To illustrate the effect of the double-chain section, we
compare the fundamental diagrams, flow versus density, in
our case and in the case of a simple chain, see Fig. 11. The
most remarkable effects are the appearance of a plateau at
the maximum current and the existence of densities greater
than unity. To explain the latter feature one has to take into
account that, in contrast to the simple-chain case, in our net-
work the bulk density happens to be inhomogeneous. The
total bulk density is defined asr=s1/3doi=1

4 ri, and the fun-
damental diagram is calculated as follows: its left-hand half
is obtained under fixedb=0.75, varyingaP s0,1d, and its
right-hand half under fixeda=0.75, varyingbP s0,1d. Re-
markably, on going deeper into the maximum-current phase
along any of the above paths, the total density of the middle
section increases steadily, while the current stays at its maxi-
mum value, and the bulk densities in the head and tail seg-
ments remain constant, too. Since the total densityr2+r3 in
the two branches of the double-chain section can exceed

unity, see Fig. 6, the total bulk density exceeds unity, too.
The plateau is due to the above mentioned increase of the
total density at constant current. Note that the mirror sym-
metry with respect to the middle of the density range is pre-
served due to the particle-hole symmetry.

We believe that future investigations on traffic models of
complicated single-lane networks are necessary and will re-
veal new features which have no direct analogs in the
simple-chain case. Our preliminary simulations show that
some of the observed correlation effects depend strongly on
the length of the head and chain segments.
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