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Totally asymmetric exclusion process on chains with a double-chain section in the middle:
Computer simulations and a simple theory
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Computer simulations of the totally asymmetric simple-exclusion process on chains with a double-chain
section in the middle are performed in the case of random-sequential update. The outer ends of the chain
segments connected to the middle double-chain section are open, so that particles are injected at the left end
with rate « and removed at the right end with rgge At the branching point of the graplthe left end of the
middle sectiol the particles choose with equal probability 1/2 which branch to take and then simultaneous
motion of the particles along the two branches is simulated. With the aid of a simple theory, neglecting
correlations at the junctions of the chain segments, the possible phase structures of the model are clarified.
Density profiles and nearest-neighbor correlations in the steady states of the model at representative points of
the phase diagram are obtained and discussed. Cross correlations are found to exist between equivalent sites of
the branches of the middle section whenever they are in a coexistence phase.
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[. INTRODUCTION dimensional versions of the TASEP have been used to model
traffic in a city, see, e.g., Reff26—2§ for the case of peri-
‘odic boundary conditions and Ref29,37 for open bound-
aries. Recently, the anisotropy effect of the probabilities of
. . . L >changing the direction of motion of the cars on the dynami-
time stochastic dynamics. The process, first introduced gy jamming transition under both periodic and open bound-
= - Saries has been studig@1]. In the two-dimensional lattice
with periodic, closed, gnd open .bpundary conditions. In th%odels, however, the motion of the up-directed and right-
latter case, when particles are injected at the left end withy; o teq cars is controlled by traffic lights. Similarly, in the
rate « and removed at the right end with ra6e boundary- 1 itijane traffic models some mandatory rules for lane
induced phase transitions have been pred@@dExact. re- changes are specified. Such studies of complicated road net-
sults have been obtained for the steady-state properties undgp g are necessary for better understanding of real traffic.
different updating rules: randomtsequeniﬂal—G]_, forward- To the best of our knowledge, the case of bifurcation or
and backward-ordered sequentigd,g], sublattice-parallel junction of equivalent roads has not yet been considered.
[9,10], and fully paralle|[11,12; see also Ref13]. The case " yhis naper we attempt to model traffic flow on a road
Of. random—se“quenflal update has b?e” cons!der_ed on a Mightwork consisting of a single lane with a double-chain sec-
with a defect(*slow”) bond[14] and with a moving impurity o i the middle. In other words, we consider a single-lane
@ smgle negative particle[15]. In both cases the particle- 54 \yhich bifurcates into two equivalent branches which
density profile was found to develop a shock structure. Mu"subsequently merge again into a single lane. Due to the net-
tispecies generalizations have been suggested1®a17. work complexity, we choose the simplest model of the ve-
One of_the ”?t”fa' physical inter_pret_ation_s of the tOtaIIyhicuIar motion i|'1 terms of TASEP with random-sequential
asymmetric version of AS.EH—ASEH IS given in terms of a update, since this update is the easiest for analytical treat-
single-lane vehicular traffic, see the recent rgwe{ﬂs&,lq. ment. In particular, the exact expression for the current in-
Howevgr, the fully parallel Qynamlcs IS co.nS|dered as ,mOS[:Iudes only nearest-neighbor correlations. By neglecting
appropriate for traffic modeling, and itis laid on the basis ofy,ase correlations at the junctions of the simple-chain seg-
more sophisticated updgite rulgg0,21]. The TASEP with ents, we introduce in our simple theory effective injection
parallgl upda;e results. in the Nagel-Schreckenberg mod nd removal rates for each chain segment and study the pos-
[20] with maximum vehicle VeloCity ma=1. sible phase structures of the whole system in terms of these

Recently much attention has been paid to cellular automagioq * Moreover, the nearest-neighbor correlations can be

ton quels of traffic on roads with localized inh_om_ogeneitiesreadily evaluated in our computer simulations which, in turn,
modeling on- and off-rampg22-24. Such spatial inhomo- 5 15v5 ys to distinguish between finite-size effects and cor-
geneities were sh_own to lead to different dy”am'ca' phaseﬁelation ones. One would expect the same principal results to
of congested traffic. Microscopic models of multilane trafﬁch Id for the other types of update, since, e.g., the phase dia-
with_different lane-changing rules have been suggested aN%ram of the TASEP has the samé basic, struéture for all the
studied, too, see Refi25] and references therein. Two- updates. The two branches of the middle section are assumed
to be equivalent simple chains consisting of a large number
of sites, and so are the simple chains connected to them, see
*Electronic address: brankov@bas.bg Fig. 1. The ends of the chain segments are open, so that

The one-dimensional asymmetric simple-exclusion pro
cess(ASEP is one of the simplest models of self-driven
many-particle systems with particle conserving continuous
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and a tail chain segmel@, of L3 sitesi=L;+L,+1,L;+L,
+2,... L1+Ly+Ls To simplify notation, we denote bl
=L,+L,+L5 the total number of sites a particle can pass
through. Due to the hard-core exclusion each site can be
empty or occupied by at most one particle, i.e5{0, 1},

FIG. 1. Schematic representation of the model system: one[‘_eSp_eCtively’ Whe'fe'i is the random occupation number. of
dimensional chain with a double-chain section in the middle. TheSitei; the occupation numbers of the branches of the middle
particles are injected at the left end with probabitinand removed ~ Section will be distinguished by the superscrigts and (2)
at the right end with probability. The head(C,) and tail (C,)  for the uppers”, and lower7? branch, respectively. The
chain segments consist &f, and L5 sites, respectively, and the open boundary conditions are implemented by introducing
chain segment€,, C; of the middle section consist of equal num- an extra “source” sité=0 to the left of sitd =1, which plays
ber of sitesL,. At the bifurcation point the particles take the upper the role of a reservoir of particles. The time evolution of the
branch with probabilityp,. In the simulations we sdt;=L,=L;  system obeys the random-sequential update. At each time
=L andP,=1/2. stept—t+1, a pseudorandom number is drawn from the set

{0,1,... Lo with equal probability 1(L,,+1). If the inte-
particles are injected at the outer left end with rateand  geri is in the bulk, particles jump to the neighboring right-
removed at the outer right end with rgBe At the branching hand site with probabilityp=1, provided the target site is
point of the graph the particles choose with equal probabilityempty:
1/2 which branch of the middle double-chain section to take.

To simulate simultaneous motion of the vehicles along the

two branches, each trial to move a particle on one of them is
immediately followed by a trial to move a particle on the Tiea(t+ 1) = 7140 +[1 = 742 (D ] 7 (D). (1)
pther branch. If a particle occupying the Ia;t site of a_branct]f i=0 is chosen and,=0, then a particle is injected at site
is chosen to move, and the site to the right, at which thg -1 wjth probability @, otherwise the configuration remains
branches merge, is empty, then that particle hops to the lattgf,changed. If the last site=L,, of the tail chain is chosen
site, thus blocking(temporarily the flow from the other anq if it is occupied by a particle, then that particle is re-
branch. One may ask the question: will the presence of apg,gved from the system with probabilitgg, otherwise the

additional lane in the middle increase the flow through theconfiguration remains unchanged. These boundary condi-
entire network? In favor of the negative answer is the argusjons imply that the system is coupled to reservoirs of par-

ment that the total flow is limited by the bulk capacity of cjes with constant densitias and 1-8, respectively.

chain segments connected to the middle double-chain sec- The |ast sitei=L, of the head chain is a branching point
tion. On the other hand, the exact solution of the single-chaif.q, which the particles can take the upper or the lower
problem[4,5] shows that the flow depends on the phase ofyanch of the double-chain middle section with equal prob-
the chain under consideration which, in turn, depends on thﬁbility P,=1/2. Thesimulation of simultaneous and inde-
input and output rates at its left end and right end, respecsendent traffic of particles on the two branches is performed
tively. Here we recall that the branching and merging pointsy, the following way. Whenever a site belonging to the
can be viewed as inhomogeneities of the entire networkhiqqie section is chosen. i.e. whep+1<i<L,+L,, with
which are expected to produce correlations between the Ogropapility 1/2 that site is taken in the upper or lower branch

cupation numbers of the nearby sites. Due _to the constancyng the rule(1) is applied to it first. Then a second site
of the current through the bonds of each chain segment, the§_e1+ 1<j=<L,+L,, is chosen randomly from the other branch

corr.elations change the density profile near.the en'ds Qf thsf the middle section and the rul@) is applied to it next.
chains. Thus, the presence of a double-chain section in beme particles from both the upper and lower branches of the
tween two simple chains affects the output rate of the chaifiggle section can enter the first siteL, +L,+1 of the tail
to the left and the input rate of the chain to the right. Hencechain of the system whenever it is empty. In the present

the answer to the above question is not so obvious. study we consider only the case when all chain segments
By means of computer simulations we have evaluated thg ;e equal number of sites, i.&y=L,=Ls=L.

steady-state current, density profiles, nearest-neighbor corre-
lations along the simple-chain segments, as well as the cross
correlations between equally positioned sites on the two
branches of the middle section.

7i(t+1) = 7(t) 7410,

Ill. PRELIMINARY ANALYSIS

To systematically study the steady-state properties of our
network, one has to select representative values of the input
a and outputg rates. For sufficiently largé, the natural

In the present paper we study TASEP on a graph consisguidelines are given by the exact results known for the
ing of a simple chain with a double-chain section in thesimple chain with open boundaries in the thermodynamic
middle. A schematic representation of the system is shown itimit [5,6]. Let us recall briefly that in the bulk limit the
Fig. 1. The system has four distinct parts: a head chain segimple chain is in the low-density phaskwhen a<pg,«a
mentC, of L, sitesi=1,2,... L, a middle section consist- <1/2, it is in the high density phasg& when o>,
ing of upper,C,, and lower,C;, branches ol sites each, =<1/2, it is in the maximum-current phas@! when

Il. THE MODEL
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a>1/2,>1/2, and it is on the coexistence lidebetween «=g. Since the current through each of the branches of the
the low-density and high-density phases whem middle section equals half the total ong,x(1-p,3)=a(l
=B,a<1/2. Thus, we start by assuming that each of the-«)/2, C, andC; may be found either it with p; (@) <a
different chain segments;, i=1,2,3,4, of oumodel is ex-  or in H with PZ,s(a)>1‘a1 where

pected to develop steady-state properties characteristic of

one of the above simple-chain phases. It is now convenient pso@) =5{12[1-2a(1-a)]V3. (5

to denote the expected phase structure of our model by .

string of three letter§X;, X, 5, X,), with X, e {£,H,M,C}, ‘?hus, the possible pure-phase structures it L are
i=1,...,4. HereX, stands for the phase of the chain segment (L,L.0), (LH,L) ifa<ll2a#pB (6)

Ci, and X,=X; due to the equivalence of the upp€,) and

lower (C5) branches of the middle section. Of course, not alland
the possible combinations are allowed to occur, e.g., due to -
the fact that the current through the branches of the middle (L.LH), (LHH) i a=p<12. @)
section is half the one through the head and tail chains, for A2 Let the head chailC, be in the high-density phase
macroscopic chains these branches may never be found {,=7) with bulk densityp,>1/2. Then, from Eq(3) we
the maximum-current phase. We shall refine the possiblgbtain that the tail chailC, can be either inC with p,=1
phase structure of our model at two successive levels A andp, or in H with p,=p;. In the former case the phase struc-

B. ture is

(H!EYK)! (HlHIC)! (8)
A. First-level analysis
and no further conclusions can be drawn.

At the first level A we take into account only the exact In the latter caseX,=H implies

results for a simple chain with open boundaries in the ther-
modynamic limit. In this case, the pair correlations between g<1/2, J=pB(1-p), p1=ps={(7 r): 1-B>1/2.
nearest-neighbor sites vanish in the bulk and the cudignt ©

through a chain with bulk particle densify is given by ©)
J(p)=p(1-p). Denote byp; the bulk density in the chain gjnce the current through each of the branches of the middle
segmentC;, and by(r) the steady-state particle density at section equals half the total one, 5(1-p, 5 =8(1-8)/2,C,
sitei. Then, taking into account the inflod,=a(1~(r))  andC, can be found inC with p; () <1-py, or in K with

and outflowJo,=B(7 ) of the system, the current conser- p} (B)>p,, where p3 i) is given by Eq.(5). Thus, the

vation in our model implies the chain of equalities: other two possible pure-phase structures wht=7 are
J=a(l=(m)) = ps(1 = p1) = 2p3 (1 = p23) = pa(1 = ps) (H,LH), (HHH) if B<1/2. (10
=p(m,)- ) A3. Let the head chairC, be in the maximum-current

phase (X;=M), which may happen ifa>1/2. ThenJ

Here we have taken into account that each of the mlddle;l/4 and Eq.(3) implies thatp,=p,=1/2, hence the tail

section branches is chosen with probabilty=1/2 which, chain C, must also be in the maximum-current pha
) _ ! ; 4 - 48,
together withL,=L5, leads to their equivalence, henpg - M, which may happen if3>1/2. Since the current

r:e’fg.ti;)rrr:ss, we obtain that the bulk densities must obey thethrough each of the branches of the middle section equals
1/8, C, andC; can be found either i with p, ,<1/2, or

Pas 1 in H with p; ;>1/2, where
p1= {1 ! p2=p3= {1+ [1-2p1(1-p)]"3. (3)

= Pa, 2
Let us confine our consideration now to the determination o
the allowed phase structures consisting of the pure phases
H, and M only. At that we shall keep in mind that when, (M, L, M), (M,H, M) if a>1/2 andB> 1/2.
under given values of the rates and 8, a chain segment
may be in both a low- and high-density phase, it may occur 12
as well on the coexistence liiebetween these two phases.  From the above analysis it is evident that a little informa-

Consider now all the pure phases of the head ckain tion can be inferred about the phase structure of our model
Al Let the head chail€, be in the low-density phase from the current conservation conditio®). That is why, at

(X1=L) with bulk densityp,;<1/2. Then, from the exact the next level approximation B we shall ignore the correla-
solution for a single chain we have tions between the chain segments, which will make possible
_ _ _ _ the definition of effective injection and/or removal rates at
J=all-a), (m)=a, p=a<l1/2. @ the junctions of the simple chains. On the one hand, this is an

Note that Eq.(3) allows the tail chainC, to be either inL approximation, since the inhomogeneities introduced by the

with ps=a, or in H with p,=1-a. The latter caseX,=H, branching and merging nodes are expected to induce corre-
implies 8<1/2 andJ=8(1-p), which is possible only if lations, as is the case of a simple chain, or a ring, with a

ph 5= (1 1N2)/2. (11)
tI'hu:s, the possible pure-phase structures Witk M are
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defect bond, or a single-impurity particle, respectively. Onwould be on the coexistence line between low- and high-
the other hand, the comparison of the so obtained predictiordensity phases. Frody; =£ and X,;="H, taking into account
with the results of computer simulations will reveal in which Eq. (14), we infer

cases the correlations between the chain segments are essen-

tial for the phase structure of our network. (=p1=a, (n)=all-a)lf;, ay3=a(l-a)l(2B)
(18)
B. Second-level analysis and
Passing to the second level B, we assume the following
pairs of random variables to be independept:and T(Lllf)l as () =1l-al-ad)las (7, )=ps=1-a,
well as r(Lllf)Lz and 7. 1. The neglect of the corresponding B2 = a(l-a)lay. (19)

pair correlations leads to the approximate expressions for the
total current:

1 _ (D 1 _/2
P a0 () (152 = pyoa) = aga= (7 )2,

= b 7(2) =T . +L.+1)) -
() +( A~ (). (13 (42 )= a1 -y lfya= 2. (20)

When &, ;=L we obtain from Eq(3) that p, 3=p; 5(@),
and from the simple-chain solution it follows that

Hence, by comparing with the case of a simple chain with

open boundaries, and taking into account the equivalence dfhe above equalities determing ;=p, 5(a) <1/2 and from
the two branches of the middle section, we obtain estimateEd. (14) we find alsoB;=1-a, 3=p a) > . The latter in-
for the removal rates; of the head chairC,, the injection equality, together withw<<1/2, ensures that’;=L. How-
@, 3, and removalB, ; rates of the chain segmer@s 5, and  ever, the values of3, ; and a, remain undefined, only a

the injection ratex, of the tail chainCy: relation between them exists according to the last equality in
_ (1.2 3 _ Eq. (19). The conditionsﬁ213> a3 for X, ;=L and ay> 8 _
B1=1 _<TL1+1>’ a23= 3700 Boz=1 (1L e ,00), =a for X,=H can be rewritten in terms of the local density
(1,2)
ay=2 T(L11+2|)_2> (14) <TL1+L2> as
. . 1,2 — 1,2
On the grounds of the above assumptions, we are in the al2 <(r}3) < prd@)=1-(1-D). (21

position to reconsider in more detail the theoretical expecta-
tions about the phase structure of our model.
Bl Consider first the phase structures given in Hj,

When X, ;=H we obtain from Eq(3) that p; 3= p; 5(a),
and from the simple-chain solution it follows that

where X;=L implies «<1/2 and a<pB;, X,=L implies (#12 y=pt ()= 1-B,5=(r )

a,<1/2 anda, < B. Then, from Egs(2) and(14) it follows Lyt = P23 237V hytlh

that (22 = 1= o1 -Bralars=1- 1.
ay=a<l/2, J=al-a), (22

P=pa= (T )= Bpz=l-a. (19  The anove equalities determifa 5=p; (@) <1/2 and from
The above relations are compatible only with ;=2 when  EQ. (14) we find alsoa,=2p; (@) >2a. The latter inequal-
the simple-chain solution yields ’ ity, together withB=a<1/2, ensures that,=H. However,

the values ofB; and a, 3 remain undefined, only a relation
<7'(L11+2)1> =pp3=azs P1=1 —<T(L11‘+2)1> =1l-a,3 (16)  between them, namelyy, ;=a(1-a)/(23,) follows from

the second equalities in Egel4) and (18). The conditions
a<p for X,=L and B, 3< a, 3for X, 3="H can be rewritten
in terms of the local densityn’?) as

ay3=pya(a) < Br3=1-a, i i
D <l-ea 23
Br1=1-ps o) =pisa)> a. 17) 2@ <(1ip<1l-a (23)

The above equations prove that the phase stru€iiyg€, £)
is compatible with the conditions on the external rates’
a<1/2 anda< B, under which a single chain is in the low-
density phase.

The alternative¥; 3
have p, 3=1-8;, 3=a, hence,B;,3=1-a>1/2 violates the

Hence, taking into account E¢3) with p;=«a, and keeping
in mind that in the low-density phagg ;<1/2, we obtain

Here we have taken into account that, due to E#8) and
19), B, 3<a, 3 is equivalent toa,> B,/2.

Next, from Eqgs.(18) and (19) it follows that if 8;=ay,
then a, 3= B, 3=p, s(@) <1/2, which implies that the chain
=7 is excluded. since then one would S€9gments of the middle section are on the coexistenc&line
' between the phases with bulk densitjgs,(a) and p;g(a).

condition for a high-density phase 6% s From the simple-chain solution we know that the local den-
Consider now the pure-phase structures given in(gg.  Sity profile is then linear, with

which are allowed under the conditiam=8<1/2. Recall 12\ _ - 1.2 \_ +

that a single chain with such injection and removal rates (ML =p2a@), () =p2da). (24)
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Summarizing the above results, we obtain the following

possibilities:

(L.L,L) if @< 1/2 anda < B, (25)

(L,L,H) if a=B<1/2 anda/2 < ff{ ) < p34a),
(26)

(L,HH) if @=B<1/2 andp, (@) <(r}F) <1-a,
(27)

(L,CH) if a=B<1/2 and(1>2) = pp @) =1 ~(7*2 ).
(28)

B2. Consider next the phase structures given in .
Due to the simple-chain solutiotk’; =H implies

Pr<12,a> By, py=1-p1>12,3= (1~ ),

(n)=1-p, (29)
and X,=L implies

ay <12, a4 < B, ps=as I=ayl-ay), (71 +1) = as.
(30)

Hence, taking into account E(R), we obtain

@4 =P1, p23=p23B1) <12, py=1-py=p; <1/2.

(31)
In addition, from Eq.(14) we obtain
(7 |_1+1> 1-p1=(1 ) =2ap3>1/2,
(108 ) = a2 =pyJ2 < 1/4. (32

PHYSICAL REVIEW E 69, 066128(2004)

<7'|_ > P23(B) a3 3, (35

which (for 8+ 1) contradicts the result that follows from Eq.
(14) and the last equality in Eq29):

ap3=( )2=(1-p)/2.

It remains to consider the other possibilitg ;=7 when the
simple-chain solution gives

(36)

<T|_1+|_2> P2, 3(;8) =1- B3 (37
hencep; 3=p, 5(8). From Eq.(14) it follows that
=2AnA)=21-B9 =20, 4B >1, (39

which, together with8<1/2, ensures the condition,> 8
for X, 3="H. From Egs.(29) and(37) it follows that for all
B#1,

ap3=(1)/2=(1~B)I2> B, 3= p; 5(B) and

B23=paoB) < 1/2. (39

The above inequalities are the necessary and sufficient con-
ditions for the chain segment, ; of the middle section to
be in the high-density phase. Thus, we have ended up with

the phase structure
(H,H,H) if a>pBandB<1/2. (40)

B3. Finally, consider the phase structures given in Eg.
(12). From the simple-chain solutions fot;=M (when
a>1/2 and p;>1/2) and X;=M (when a,>1/2 and
B>1/2) we have

<T]_> =1 _(40{)_1 > 1/2, <T|_1> =
(M) =1- (4ot >1/2, ()= (4p)t<1s2.
(41)

(4B t<1/2,

Hence, taking into account Eq(l4), we obtain a; 3
=1/(8By) <1/4 andpB; 3=1/(4ay) <1/2.

One can readily see that the above relations are incompatible If X, =L, then p,3=p, ; and the simple-chain solution

with both possibilitiesX, ;=L and X, ;=7. Indeed, in the
former case the simple-chain solution yields
(128D = pra(By) = a3 < 112, (33)

which contradicts the first chain of equalities in E§2),

since 1-8,#2p, 4By for all B;#1. In the latter case,

X, 3="H, the simple-chain solution yields
<T(L13L2> P2, 5 4B > 1/2, (34)

which contradicts the second chain of equalities in B§),

since 2);3(/81) # 34 for all B;. Therefore, phase structures of

the type(H,X, L) are excluded by our analysis.
Consider now the pure-phase structures given in(Eo).

From Egs.(9) and(29), which hold true in this case, it fol-

lows thatg=8,<1/2 and<r,_l>:1—ﬁ> 1/2. The possibility

yields
<T§_11'3)1> =ap3=py3<1/4,
(43 L, )= a1l a3 3= ayl2.

With the aid of Eq.(14) we determing3;=pj ;>1/2, while
B3 and a, remain unknown. The remaining condition
Ba3> a3 for X, 3= L yields a, < 2p} 5 The latter inequality
and the conditiorw,>1/2 for X,=M lead to

(42)

1/4< <T<L1 EL )< p3 s (43)

If the other possibility X, ;=7 takes place, them,;
=p; 5 and the simple-chain solution yields

<T(|_ll'+2|)_2> =p33=1-Bos=1-(4ay) ™},

<T(Ll+2)1> Bod1-Br3la,3=1-B1. (44

X,3=L is excluded, since then the single-chain solution

would give

Hence, we obtain the result®,;=p,;<1/2 and a4
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=2p5 3> 1, which are in agreement with the assumed phase: ~ 1.00
of C,3 and C,. The remaining conditionsy, 3> 3, 3 for a=0.25, p=0.5
X3=H and B;>1/2 for X;=M lead to the inequalities i
1/2< By <pj3 5 or, equivalently,

_ 12 0.75
P23< (70 <1/2. (45
Since the chain segmen®; ; can be both in low-density
and high-density pure phases, they may be found on the co<T>050

existence line, too. In this case the simple-chain solution
yields a linear density profile with

of all the chain segments.

Summarizing the above results, we obtain the following oool—0 v 0 , :
possibilities: 0.0 05 1.0 15 20 25 3.0
il

[ !
1,2\ — - 1,2 —
<T<L1+?L> = p2,3’<T(Ll+>LZ> - P;s- (46) o @ ’ i
025 | <GP  Nepemm—
Hence we obtainB;=p;3>1/2, a;=2p;5>1, and a, T ——
=B23=p; 3<1/4, in full agreement with the assumed phases I <«
1 1 1

(M,L,M) if @>1/2,8>1/2 and 14< (1] ) < p3 5
FIG. 2. The simulation results for the local density profitein

(47) the system as function of the scaled distangei/L, i
] ~ 12 =1,2,...,3, in the low-density phaséL,L,L) for the specific
(MH,M) if a>1/2,8> 1/2 andp, 3 < <7-L1’+1> <1/2, choicea=0.25 8=0.5.
(48)
1. Casea<1/2 anda<p
(M,C,M) if a>1/2,5>1/2 and This case was studied for the particular values aof
<T(L11+2)1> =py3=1 —<T<Lllf)Lz>. (49 =0.25andB=0.5. The estimated relaxation time for the bulk

density isN,=400 SPS. The steady-state quantities were
Thus, the refined analysis of the allowed phase structuregyvaluated on the basis of a twofold averaging over 300 inde-
based on the neglect of the pair correlations between thpendent runs of length 16PS eactiafter the omission of
nearest-neighbor occupation numbers belonging to differerthe first 5 10* SPS. The so obtained local density profile is
chain segments, yields the eight possibilities given by Egsshown in Fig. 2 as a function of the normalized coordinate
(25—28), (40), and(47)—(49). However, our computer simu- X=i/L. As expected from our preliminary analysis, see Eq.
lations, presented in the following section, show that when{25), the phase structureC, £, £) is realized. The compari-
ever the chain segmen®; ; of the middle section may exist son of the theoretical predictionsvith the superscript th
in either the low- or high-density phases, they are alwaysind the simulation resuligvith the superscript sijnfor the
found on the coexistence line. The numerical results for eachurrent and the bulk densities in the simple-chain segments
of the remaining four phase structures will be compared wittshows that they agree fairly well, within expected finite-size
the predictions of our simple theory in the following section. and finite-sample corrections:

IV. SIMULATION RESULTS J"=0.1875,p=0.25, p§3=0.1047 ... ,py = 0.25,

The main results of our computer simulations are obtained
for chain segments of equal number of sites100 orL <im sim sim
=200. Time is measured in units ¢BL+1) local trials, JM=0.18741), p;"'=0.25014), p;3=0.1041),
which we call steps per sit€SPS. Our estimates of the pa"=0.25136). (50)
relaxation timeN, for reaching the steady state from the
empty initial configuration show that it may strongly depend
on the phase structure of the system, as well as on the quakven details of the shape of the density profiles are well
tity under consideration: as a rule, the shortest relaxatioexplained. The density profile of the head chain segragnt
times are found for the evolution the total density per site ofis typical for a simple chain in the subregion<1/2< g of
a chain segment, and the longest for the local cross correldhe low-density phase, where<1/2 and 1-8,<a<p;.
tions between equivalent sites belonging to the two branchesdeed, the above conditions are fulfilled, since from Eq.
of the middle section. Below, we present the results for thg17) we have; >« and 1-8;=p; 40.25=0.1047.. <a.
different phase structures observed, along with a comparisohhus, the density profile is flat from the first site 1 fill
with the theoretical predictions obtained in the precedingclose to the end site=L,, where it bends downward to reach
section. the theoretical value given by Egd.4) and(17):
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0.030 =Liot Where<r,_tm>5‘mz0.3752. The latter value is in remark-
I 0=0.25, p=0.5 able agreement with the exact simple-chain solution in the
0.025 - thermodynamic limit:
0.020 |- ()" = ay(1 - ay)|B=0.375. (53)
[ The observed discrepancies are obviously due to the short-
0.015 | : i ;
F I range nearest-neighbor correlations which appear near the
cor T inhomogeneities introduced by the bifurcation and merging
0.010 - points, see Fig. 3.
!
0.005 - i ;T 2. Casea=8<1/2
[ I \ J Most surprising are the results of our computer simula-
0.000 - A~ tions in this case. For chain segments of leng#200 sites
1 and the particular values=3=0.25 the estimated relaxation
-0.005 |- time isN,.~ 6 10°. The results reported here were obtained
‘I . . . . . . after averaging over 200 runs of length2(® SPS each.
-0.010 00 05 10 15 20 25 30 Since we have no control over the local densi(iééf)l) and
ilL <7-(L11'f)LZ>, we cannot force the system in the phase structures

. . . given by Eqs(26) and(27). Therefore, we expect to find the
tion functionF,, in the low-density phaseC, £, £) for the specific  ggg Eq(28), between the low-density phase with bulk den-

choicea=0.25,5=0.5. sity p; 5(0.25 = 0.1047 and the high-density phase with bulk
density p; 40.25~0.8953. However, the simulations
<7-Ll>t“= 20 3=2p,50.29=0.2094... . (51) vyielded values of the local density at the ends of these seg-
ments,
The latter value is slightly higher than the simulation esti- <T<Lll,+2)1>sim: 0.23951)’<T§_11,3|)_2>sim: 0.75031), (54)

mate(r,_l>5imz0.2008.
The local density profile of the chain segme@is; of the ~ which are very different from the theoretical expectations,
middle section closely resembles the one of a simple chain inee Eq(24).
the subregionre< 8<1/2 of the low-density phase, where  Another unusual feature is the nonvanishing slope in the
p3<1/2 and a, 3<B,3<1-a,3 The above conditions density profiles of the head and tail chain segments, see Fig.
hold, since from Eq(17) we havea,3<pB,3 anda,3<1 4, which are expected to be in the low- and high-density
-B.3=a. As is seen from Fig. 2, the density profile is almost phase, respectively. In excellent agreement with our simple
flat from the first site, Where(rL1+1>Sim~O.1023 is just theory are only the local densities at the first and the last sites
slightly less than the bulk valugf';=0.1047. ., till close to  of the system:
the end, where it bends upward to the val 11’+2|)_2>S'm (r)¥M =~ 0.2508,(r_ )™~ 0.7493. (55)
~0.1536. However, the latter value is noticeably higher than o
the theoretical prediction following from Eg€l4) and(15):  According to Eqs(18) and(19), the above values are to be
compared td)"=0.25 and(__)"=0.75, respectively.
(712 Y= 4,12 = /2 = 0.125. (52 An inspection of the nearest-neighbor correlations shown
12 in Fig. 5 reveals two important features. First, strong corre-
lations with parabolic spatial dependence in the chain seg-
The observed discrepancies are obviously due to the shorinents of the middle section, which is indicative of phase
range nearest-neighbor anticorrelations and correlationsoexistence with completely delocalized domain wall be-
which appear near the inhomogeneities introduced by theveen the low- and high-density phases. Second, rather
bifurcation and merging points, see Fig. 3. strong correlations developing in the head and tail chain seg-
The local density profile of the tail chain segmé&ithas  ments away from the open boundaries. The spatial depen-
a slight bending upward close to the left end, wheredence of these correlations resembles the wings of a parabola
(1,+1,#+°"=0.273 is somewhat higher than the bulk den-with missing central part. In an attempt to explain these fea-
sity. This effect is apparently caused by the above mentionetiires, we elaborate the model of completely delocalized do-
correlations. Apart from it, the profile fits well to the one of main wall by taking into account the inhomogeneous block
a simple chain in the subregioa<8<1/2 of the low- structure of our system.
density phase, wherey,<1/2 and a,<B<l-a, The Let the position of the domain walf be a continuous
above conditions hold, since from E(L5) we havea,=« random variable taking values in the interv@l,3L). Sup-
=0.25 and, in the case under considerafisrD.5. As is seen  pose that it is distributed with uniform density over each of
from Fig. 2, the density profile is flat in the bulk and has athe chain segments. Take into account that the domain wall
well pronounced bending upward close to the last site in C; and C, is different from that in the branches of the
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FIG. 5. (Color onling The simulation results for the nearest-
neighbor correlation functior.,, at the phase pointt=0.25,3
=0.25(solid squares—solid lingand the analytic results given by
Eq. (61) (dashed lines

FIG. 4. (Color onling The simulation results for the averaged
density profile(7) in the system as function of the scaled distance
x=i/L, i=1,2,...,3, at the phase poinx=0.25,3=0.25 (solid
squaresand the analytic results given by E¢8) (dashed lines

namely,x=i/L and é=y/L. Then we can write the probabil-

middie sectiorC, 5 Indeed, the current through boti and ity distribution function of the domain wall in the form

C, is equal toJ=a(1-a), hence the domain wall in each of

these segments is between a low-density phase with bulk p1X if0<x<l1
densityp;=a<1/2 and a high-density phase with bulk den- P(§<X) =1 py+ pa(x—1) ifl<x<2 (56
sity p,=1-a>1/2. On the other hand, the current through DL 4Pyt pyx-2) [2<x<3

1 2 JAC ’

each of the chain segments and C; of the middle section
is equal toJ/2=a(1-a)/2, and the domain wall in each of where 2,+p,=1, sinceP(¢<3)=1. Since the density pro-
these segments is between a low-density phase with bulfile is given by the general expression

density p, 5(a) and a high-density phase with bulk density

ps 3(a). Therefore, these domain walls are expected to travel (1-@)P(E <X +aP(E>X) 10 <x<1
with different velocities, due to which the probabilipg of (X)) =) P2 (@ P(E<X) + p; (@)P(¢>x) if1<x<2
finding the domain wall in the head or tail chains may differ (1-a)P(£<X) + aP(£>X) if2<x<3
from the probabilityp, of finding it in the middle section. (57)

Let us denote byP(-) the probability of the event in the
brackets and pass to spatial coordinates normalized.,by by taking into account thgt,=1-2p,, we obtain explicitly

a+(1-2a)px ifo<x<l1
(1(x)) =4 p2.4(@) +[p3 5(@) = po s(@)][pr+ (1 - 2p)(x=1)] if1l<x<2 (58)
(1-a)(1-py) +ap;+(1-2a)p(x—2) if 2 <x<3.

The following important consequences from the abovethe density profiles o€, and C, yields p;=0.197. This, in
theoretical model agree quantitatively with the simulationturn, gives us the estimate 0.479 for the slope of the density
results. First, the density profiles of all the chain segmentgrofiles of the segment€, ; of the middle section, which
are linear, but have different slopdé.—2«)p, for C; andC,, agrees well enough with the simulation result shown in Fig.
and [1-2a(1-a)]Y4(1-2p,) for C,3 In our case ofa 4. Second, the evaluation of the local densities at the internal
=0.25, the evaluation gb, from the linear approximation to ends of the chain segments, based on(B8), yields
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(r )= 0_348,<7-(1»+2>>th ~ 0.260, explanation of this fact can be looked for in the correlations
1 Ly+1 . . , . .
that develop at the junctions of the head and tail chains with
(123 )" = 0.7395(m .1 ,+)"" = 0.6515. the double-chain middle section.
(59) The third important consequence of our simple domain-

wall model is that it describes very well the gross features of
the nearest-neighbor correlatioRs, (i) ={77i+1) —{(7){Ti+1),

In spite of the improved agreement with the simulation re-evident from Fig. 5. Indeed, ignoring thell£orrections, we
sults in some cases, the discrepancies remain rather large. Aiave

Fcor(i):{(l—Za)z[P(§< X) - P(£ < %)] if0<x<1or2<x<3 0
[1-2a(1-a)][P(6<X)-P(¢<x)] ifl<x<2,
wherex=i/L. Thus, by using Eq(56) we obtain the explicit expressions for the nearest-neighbor correlation function:
(1 - 2)(pyx — p2x3) ifo<x<1
Feol) =1 [1-2a(1 - a)][- 2+ 9;(1 - py) + (1 - 2p)%(3x-x))] ifl<x<2 (62)
(1-2a)qps(3-x) - pH3-x)?] if 2 <x< 3.

The above expressions describe very well the simulation reconditions hold, since in the case under consideration we
sults, both qualitatively and quantitatively. It can be readilyhave 8,=8=0.25. From the simple-chain solution in the
checked that the maximum of the central parabola is reachethermodynamic limit it follows that the density profile 6§
atx=3/2 andequalg1-2a(1-a)]/4~=0.156, while the left is bent downward near the first site, where it starts from the
and right parabolic wings start from zero at the outer endyalue

x=0 and x=3, respectively, and grow inward up td

-2a)?p;(1-p;) =0.040 at the points=1 andx=2, respec- (rp"=1-B(1 - B)la=0.625. (63)
tively.

Another interesting finding is the existence of strong cros
correlations between sites of the two branchEgsdi)
=(AY 42y = (D)%), which are almost constant and of the
order 0.1 along the whole length of the middle section.

Sthis value is in excellent agreement with the simulation re-
sult (7)>™=0.62581).

2.00

PRONICN ] '
3. Casea< B and B<0.5 T T o=0.5, p=0.25

1.75 |
In this case the phase structufk,H,H), given by Eq. I
(40), was simulated withw=0.5 andB=0.25 for chain seg- 150

ments of lengthL=100. The relaxation time for the bulk I
density was found to b&l,~4x 10° SPS, and the steady- 1.25
state quantities were evaluated after averaging over 300 run

of length 1¢ SPS each. The local density profile shown in <7>1.00
Fig. 6 displays for each chain segment the features typica I
for a simple chain in a high-density phase. The comparison 075 b I &

of the theoretical predictions and the simulation results for )

the current and the bulk densities in the simple-chain seg-

<>

ments shows a fairly good agreement: 050 '
J"=0.1875,p'=0.75, pj 3= 0.89528 ... p}'=0.75, 0.25 [
sim — sim _ sim _ 0.00 r , . . . .
F=0.18705), p17=0.7491). p3=0.8981), 00 05 10 15 20 25 30

pSM=0.75045). (62) ilL

The details of the density profiles are also well explained. FiG. 6. Computer simulation results for the local density profile
The density profile of the head chain segment is typical for &7) in the system as function of the scaled distance/L, i
simple chain in the subregioB<a<1/2 of the high- =1,2,...,3, in the high-density phas@{,?,H) for the specific
density phase, wher@,<1/2 and 8;<a<1-8;. These choicea=0.5,3=0.25.
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FIG. 7. The simulation results for the nearest-neighbor correla-
tion functionF.., in the high density phasg,H ,H) for the spe-
cific choicea=0.5,8=0.25.

FIG. 8. The simulation results for the averaged density profile
(7 in the system as function of the scaled distanca/L, i
=1,2,...,3, at the phase poirt=0.75,3=0.75.

For the chain segmen; ; of the middle section we have
from Eq. (39 B,3<1/2, a;3>B,3 and 1-B3,3
:p;’3(3)>a2’3. Thus, C,3 are also in the subregion
B<a<1/2 of the high-density phase and their density pro
file is expected to start from the value

(120" = 1= o1 - By )l 3= 0.6666 ... .

est were evaluated by averaging over 100 runs of length
5.5x 10° each. Having in mind the eventual finite-size ef-
fects, the estimated curred¥™~ 0.2518 agrees well enough
“with the theoretical valug™=0.25. The local density profile
is shown in Fig. 8. The head and tail chain segments display
density profiles that are typical for a simple chain in the
maximum-current phase. This is confirmed by the fairly
This prediction of our simple theory is significantly lower good agreement of the theoretical predictions and the simu-
than the simulation estima(eﬁllfi)smzo.?:a?. The observed lation results for the local densities at the end points of these
discrepancy can be attributed to the rather strong nearesthain segments:
neighbor correlations that develop at the junction of the head th — th —
chain with the double-chain middle section, see Fig. 7. ()7=0.66666... {n)"=0.29289....,

The local density profile of the tail chain segmeBy is <T|_l+|_2+1>th: 0.85355... ,(erfh:O.333 33...,
typical for a simple chain in the subregian>1/2,8<1/2
of the high-density phase, defined by the inequalities
B<1/2, 1-a,<B<ay This is the case indeed, since Eq.
(38) yields a,>1. The theoretical prediction for the local
density at the first site o€, is

(64)

(7)°™ = 0.6643 (7 )*™~ 0.2842,
(7L pL,0" ™= 0.8481 ()™= 0.3357.
(66)

Somewhat problematic seems the interpretation of the
which is slightly lower than the simulation result density profile in the chain segments of the middle section.
(7+,+0°"~=0.898. This discrepancy may be due to thelnstead of being a straight line interpolating between the den-
nearest-neighbor anticorrelations that develop at the junctiofities p; 3 and p; 5 of the low- and high-density phases, it
of the double-chain middle section with the tail chain, seeshows pronounced curvatures near both ends. The compari-
Fig. 7. son of our theoretical predictions and the simulation results
for the local densities at the ends of the chain segmésts

<TL1+L2+1>th =1-B(1-B)a;=0.89528..., (65

4. Casea>1/2 andf>1/2 <T(|_11’+2)1>th =0.146 44 ... ,<T<Lllf>Lz>th =0.85355...,

In this case it is the phase structuié1,C, M) that is
realized in our computer simulations out of the three possi-
bilities given by Eqs(47)<49). Here we present the results
for «a=B=0.75 and chain segments of lendt=200. The shows deviations larger than the estimated statistical accu-
estimated relaxation time for the bulk density in this case igacy. A detailed analysis shows that these deviations are due
N,.=1.75x 1P SPS, and the steady-state quantities of interto the nearest-neighbor correlations, which are not negligible

(hA)m~0.1548 (1] )*"~0.8345  (67)
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FIG. 9. The simulation results for the nearest-neighbor correla- FIG. 10. TPezsimuI%tionzresults for the cross-correlation func-
tion Fcrossz<7-.( )7-|.( )>—<7-i( ))<7-i( )> between sites belonging to the

tion functionF.,, at the phase poirk=0.75,8=0.75.
different branches of the loop at the phase peirt0.75,8=0.75.

in the maximum-current phase. Indeed, from the exact ex-

pressions for the current along the two equivalent bonds aftetigh-density phases. In such a case, the theory predicts that
the nearest-neighbor correlations attain the maximum value

the bifurcation point,
of (p33~p;?%/4=0.125 at the middle of the chain. An in-
spection of Fig. 9 shows that the above value is very close to
the simulation result.

J= (U2 m (1 -7V )y + (12 (1-72,)), (68
(172)(m, (L =70} + (M2 (L= 700), - (68) Similar to the caser=8=0.25, we find rather strong cross
and before the merging point, correlations between sites with the same laldslonging to
the two branches of the middle section, which is quite inter-

esting and unexpected result of our simulations. The spatial
dependence of the cross correlations is shown in Fig. 10.
I=(r (L= )+, (L= 72 ), (69 ©P g
V. DISCUSSION

We have studied the TASEP on a directed graph with
nontrivial topology and open boundaries. The local density
<T(L11f)1>: 1_[J+F°°f(Ll)]/<TL1>' profiles, nearest-neighbor correlations along the chain seg-
ments, and cross correlations between equivalent sites be-
longing to the two branches of the middle section were simu-
12 lated for values of the parametersand 8 which correspond
(i) = [I2+Foodlys + L)1 = (7 v +0]- (700 to all the phases of a simple chain. The presence of a double-
) ) _ _ _ chain middle section leads in some of the cases to expected
By inserting here the simulation estimates for the ”eareStéteady-state phase structures, such @ L,L) and
neighbor _ correlations FeolLy)~~0.0116 and FCO'(Ll) (H,H,H), where£ andH stand for low- and high-density
~0.000 654, and the values of the corresponding averagg, qes respectively, which are characterized by short-range
occupation ”“mbefs(g'z‘)’e“ in the second I|(rl1e2) of &), We  correlations appearing in the neighborhood of the bifurcation
obtain the results(r 1})=0.15477 and(r % )=0.8329,  and merging sites of the network. Otherwise, the properties
which coincide with the estimates from our computer simu-of the simple-chain segments are close to those expected on
lations within the numerical precision. The same argumenthe grounds of the approximation which ignores the above
holds for the last site of the head chain and the first site of thenentioned correlations. For example, the reduction of the
tail chain, see Eq(66), leading to the correct valugs; )  current by factor of 1/2 in the equivalent branches of the
=0.2842 anerl+L2+l>:0.8483. middle section leads to a radical decrease, or increase, of the
The nearest-neighbor correlations are shown in Fig. 9bulk density in the(£,£,£) and (H,H,H) cases, respec-
Their parabolic dependence on the distance from the ends tifzely.
the chain segment€, ; is indicative of coexistence with Rather unexpected are the obser¢gd,C, M) and what
completely delocalized domain wall between the low- andwe would call mixed £,C,H) and(C,C,C) phase structures.

we obtain the following exact relationships:
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In the former case, which takes place whet1/2 and

B>1/2, the bending in opposite directions of the local den- 0.25 | ;!53@%——"";'

sity profile of the head and tail chains in the maximum- v Q

current phase leads to a coexistence of low- and high-densit I D// \O \_
phases in the chain segments of the middle section. The latte 0.20 |-

case occurs atv=B<1/2 when a simple chain is on the / \ \
coexistence line. For our chain with a double-chain middle I

section we have found clear evidence of a delocalized do- 0.15 |-
main wall which has different probabilities of being found in
the head/tail chains and in the branches of the middle sec
tion. No theoretical explanation has been found yet for the o.10 |
significant cross correlations between the random occupatiot
numbers of equivalent sites belonging to the two branches o
the middle section whenever these branches are in a coexis 0.05 |-
ence phase.

In all the cases studied, the current through the chain with

a double-chain middle section was found to be the same 0.00 = . -

(within statistical error as the one through a simple chain P PR P U TR T SRR

under the same injection and removal rates. 00 02 04 06 08 10 12 14
To illustrate the effect of the double-chain section, we p

compare the fundamental diagrams, flow versus density, in

our case and in the case of a simple chain, see Fig. 11. The FIG. 11. (Color onling The fundamental diagram, curreht/s
most remarkable effects are the appearance of a plateau @ansityp, from the numerical simulations: the solid squares—solid
the maximum current and the existence of densities greatdipe curve is the result for the system with a double-chain section in
than unity. To explain the latter feature one has to take intdhe middle; the empty circles—solid line curve is for a simple chain.
account that, in contrast to the simple-chain case, in our net-

work the bulk density happens to be inhomogeneous. Thanity, see Fig. 6, the total bulk density exceeds unity, too.
total bulk density is defined gs=(1/3)Si; p;, and the fun-  The plateau is due to the above mentioned increase of the
damental diagram is calculated as follows: its left-hand haltotal density at constant current. Note that the mirror sym-
is obtained under fixe@=0.75, varyinga e (0,1, and its  metry with respect to the middle of the density range is pre-
right-hand half under fixedv=0.75, varyingBe (0,1). Re-  served due to the particle-hole symmetry.

markably, on going deeper into the maximum-current phase We believe that future investigations on traffic models of
along any of the above paths, the total density of the middl€omplicated single-lane networks are necessary and will re-
section increases steadily, while the current stays at its maxiteal new features which have no direct analogs in the
mum value, and the bulk densities in the head and tail segsimple-chain case. Our preliminary simulations show that
ments remain constant, too. Since the total densityp; in ~ some of the observed correlation effects depend strongly on
the two branches of the double-chain section can exceeiie length of the head and chain segments.
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